Marketplace

  • IDEXX Water
    IDEXX

    Colilert®-18 Approved as Water Microbiological Reference Method for the Rapid Identification of Bacterial Contamination in Drinking Water

    ISO Standard Method is included in European Drinking Water Directive, now Transposed into National Legislation

  • Valeport Water
    Valeport

    Valeport unveils versatile new probe for multiple applications

    A unique new probe that combines the power of the SWiFT SVP and a turbidity sensor has been launched by leading British oceanographic and hydrographic instrument specialist, Valeport. 

  • BT Corporate Reports
    BT

    BT helps customers cut carbon emissions by 11.3 million tonnes

    BT’s annual Delivering our Purpose report, says its products helped customers cut their carbon emissions by 11.3 million tonnes. Revenue from these products totalled £5.3bn, representing 22 per cent of its total revenue last year.

  • Shared Interest Corporate Reports
    Shared Interest

    SOCIAL ACCOUNTS YEAR ENDED SEPTEMBER 2017

    Mary Coyle MBE, the Chair of Shared Interest, says: "I am pleased to report in this set of Social Accounts that we have made considerable progress in achieving the goals set out in our 2014 Strategic Review. This year our lending supported over 160 producer groups, helping almost 375,000 individuals in 60 countries, 30% of whom were women."

v ecohouse button

shared iterest button

web mossborough spud field copy

Friday, 05 January 2018 10:14

'Lost' human hair-width ocean microplastics now detected by fluorescent dye

The 'lost' 99%' of potentially harmful ocean microplastics could be identified cheaply with a fluorescent dye, its University of Warwick developers claim.

microplastics1 copyNew research, led by Gabriel Erni-Cassola and Dr. Joseph A. Christie-Oleza from Warwick's School of Life Sciences, has established a pioneering way to detect the smaller fraction of microplastics using a fluorescent dye. Many of the microplastics are as small as 20 micrometres - comparable to the width of a human hair or wool fibre.

The dye specifically binds to plastic particles, and renders them easily visible under a fluorescence microscope.

To test their new method, the researchers took samples from surface sea water and beach sand from the English coast around Plymouth. The researchers detected a much larger amount of tiny microplastics smaller than 1 mm than was previously estimated – and significantly more than would have been identified previously with traditional methods.

These results challenge the current belief of the apparent loss of the smallest microplastics from surface seawater, and highlights the need of further research to understand the real fate of plastic waste in the oceans.

Interestingly, the researchers also discovered that the greatest abundance of microplastics of this small size was polypropylene, a common polymer which is used in packaging and food containers – demonstrating that our consumer habits are directly affecting the oceans.

microplastics2 copyLarge plastic objects are known to fragment over time due to weathering processes, breaking down into smaller and smaller particles termed 'microplastics'. Microplastics are the most prevalent type of marine debris in our oceans, and their impact or potential harm to aquatic life is not yet fully understood.

Author Gabriel Erni-Cassola commented: "Using this method, a huge series of samples can be viewed and analysed very quickly, to obtain large amounts of data on the quantities of small microplastics in seawater or, effectively, in any environmental sample.

"Current methods used to assess the amount of microplastics mostly consist in manually picking the microplastics out of samples one by one – demonstrating the great improvement of our method."

Co-author Dr Joseph A. Christie-Oleza commented: "Have we found the lost 99% of missing plastic in surface oceans? Obviously this method needs to be implemented in future scientific surveys to confirm our preliminary findings. It is important to understand how plastic waste behaves in the environment to correctly assess future policies."

The research, 'Lost, but found with Nile red; a novel method to detect and quantify small microplastics (20 μm–1 mm) in environmental samples', is published in Environmental Science & Technology. It is co-authored by Professor Matthew Gibson from the University of Warwick's Department of Chemistry and Warwick Medical School, and Professor Richard C. Thompson from Plymouth University.

Research link: Lost, but found with Nile red